新闻资讯
Group news
江苏宏丰木业有限公司    您的位置: 首页  >  新闻资讯  >  正文

TensorFlow2.0终于问世,Alpha版可以抢先体验

2019年11月03日 文章来源:网络整理 热度:182℃ 作者:刘英

TensorFlow2.0终于问世,Alpha版可以抢先体验。新版本主打简单易用可扩展,大大简化API,最后,连logo也改了。

TensorFlow 2.0终于来了!

今天凌晨,谷歌在加州举办TensorFlow开发者峰会(TensorFlow Dev Summit),正式发布2.0版本。

这场发布会有几大亮点:

TensorFlow 2.0?Alpha版发布,用户现在可以抢先体验;

2.0版本具有简易性、更清晰、扩展性三大特征,大大简化API;

提高了TensorFlow Lite和TensorFlow.js部署模型的能力;

发布会还把TensorFlow目前的家底透露了一遍:目前TF在全球已经有超过4100万的下载次数,社区有超过1800多个贡献者。

TensorFlow2.0终于问世,Alpha版可以抢先体验

尽管官方没有透露中国社区的情况,但是发布会现场展示一张全球地图,根据图中的用户分布情况可以推测,目前TF中国应该是仅次于美国和欧洲的第三大地区。

TensorFlow2.0终于问世,Alpha版可以抢先体验

另外一个值得注意的变化是,从2.0开始,TensorFlow的logo也不一样,从类似积木的形状变成了两个分开的字母“T”和“F”,或许也意味着减少冗余,看上去更简洁。

TensorFlow2.0终于问世,Alpha版可以抢先体验

简单易用可扩展,TF2.0迎来新架构

TensorFlow 已经发展为世界上最受欢迎和被广泛采用的机器学习平台之一,自2015年问世,并在去年11月迎来三周岁生日。

TensorFlow2.0终于问世,Alpha版可以抢先体验

之前开发者反馈,希望TensorFlow能够简化API、减少冗余并改进文档和示例。这次2.0发布,听取了开发者的建议,因此新版本有以下三大特点:简单、强大、可拓展。

TensorFlow2.0终于问世,Alpha版可以抢先体验

基于这三大特点,TensorFlow 2.0也有新架构,如下面的简化概念图所示:

TensorFlow2.0终于问世,Alpha版可以抢先体验

TensorFlow 2.0 将专注于简单性和易用性,具有以下更新:

使用 Keras 和 eager execution,轻松构建模型

在任意平台上实现生产环境的稳健模型部署

为研究提供强大的实验工具

通过清理废弃的 API 和减少重复来简化 API

下面详细介绍TF2.0的新特性。

易用至上,TensorFlow 2.0 Alpha发布

这次TensorFlow的一些列更新,重点就在于:让你使用得更加简单。

TensorFlow 2.0发布以后,训练的流程将变得十分简洁:

TensorFlow2.0终于问世,Alpha版可以抢先体验

主要流程就是:数据集成和转换→模型构建→训练→保存模型。

当然,TensorFlow也秉承着“哪儿都可以部署”的原则,使其在应用方面更加灵活和方便:

TensorFlow2.0终于问世,Alpha版可以抢先体验

下面是TensorFlow2.0在这次更新中的几大亮点:

TensorFlow2.0终于问世,Alpha版可以抢先体验

TensorFlow Alpha

更易用:诸如tf.keras等高级API将更易于使用;并且Eager execution将成为默认设置。例如:

>>>tf.add(2,3)

更清晰:删除了重复的功能;不同API的调用语法更加一致、直观;兼容性更加完善。

更灵活:提供完整的低级API;可在tf.raw_ops中访问内部操作;提供变量、checkpoint和层的可继承接口。

当然,TensorFlow 2.0 Alpha版本从安装上便十分的简单,仅需一句话:

pip install -U --pre tensorflow

而Eager execution 与 “@tf.function”作为核心升级重点,接下将会对其如何协同工作进行做详细介绍。

其中一个最明显的变化是,TensorFlow 是 “Eager 优先”,这意味着 op 在调用后会立即运行。在 TensorFlow 1.x 中,使用者可能会先构图,然后通过 “tf.Session.run()” 执行图的各个部分。

TensorFlow 2.0 从根本上简化了 TensorFlow 的使用 — 同样出色的 op,现在却更易理解和使用。

a?=?tf.constant([1,?2])b = tf.constant([3, 4])print(a?+?b)# returns: tf.Tensor([4 6], shape=(2,), dtype=int32)

TensorFlow 2.0 使用 Keras 作为开发者的核心体验。在 2.0 中,可以如常使用 Keras,利用 Sequential API 构建模型,然后使用 “compile” 和 “fit”。tensorflow.org 中所有这些熟悉的 “tf.keras” 示例均可在 2.0 中实现 “开箱即用”。

Keras 的 “fit()” 适用于很多情况,但是,需要更高灵活性的开发者现在可以有更多选择。来看一下如下示例中以 TensorFlow 2.0 风格编写的自定义训练循环:

上一篇:阿里巴巴已经成为中国第一大AI智能音箱厂商


下一篇:华为nova 4e真机登录工信部 水滴屏、后置竖排三摄 售价2199元

友情链接
Links
鸿运国际官网_鸿运国际备用网址